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1. Introduction

Let R be a commutative ring. A Markoff-Hurwitz equation over R is an equation
of the type

2 2
x1++zn:bxlzn’

where b € R\ {0} and n > 3. Markoff [21] used continued fractions to find all integer
solutions in the case b = n = 3 and Hurwitz [18] described the set of integer solutions
in the general case. For a history of the problem and related references see [5].
Baragar [6] and Silverman [22] studied solutions to a Markoff-Hurwitz equation
when R is an order in a number field. Recently [4] we considered the case when
R = Z/p*Z, where p is a prime and k is a positive integer. Using an elementary
algebraic-combinatorial approach, we obtained expressions that allow us for a given
Markoff-Hurwitz equation to find the number of its solutions over Z/p*Z if the
number of solutions over Z/pZ is known.
Carlitz [9] considered a generalized Markoff-Hurwitz equation

2 2
ax]+ - F+ax, =bry -z, +c,
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where aq,...,a,,b € R\ {0}, ¢ € R, over R = GF(q) with odd ¢. He found the
explicit formulas for the number of solutions when n = 3 and when n = 4 (under a
certain restriction on the coefficients). Some generalizations of Carlitz’s results can
be found in [2,3].

In this paper, we study a generalized Markoff-Hurwitz equation in the case when
R = Z/qZ, that is, we consider a congruence of the type

alx%+...+anmizbgj1---xn+c (mod q), (1'1)

where n > 3, ¢ > 1 is an integer and ai,...,ay,,b,c are integers such that
ged(ar---an,q) = 1. Let @ = (a1,...,a,) and let Ny ,(@,b,c) denote the num-
ber of solutions to (1.1) in z1,...,2, (mod ¢). For an integer z and an odd ¢, let
(2/q) denote the generalized Jacobi symbol. Cohen [10] investigated (1.1) when ¢
is odd and b =0 (mod g). He proved [10, Corollary 1] that

1" 2q, ---
q”1§2<( 2 - a”) 57(173 if2n,
Ngn(a,0,0) = dlq ‘P(dZ)

"ty

d2lq dn

if 24 n,

where ¢ is the Euler function. For the case ged(c,q) = 1, Cohen [10, Corollary 2]
gave the formula

no1 s ((CDPar a0\ p(d) :
q dz|: < 7 iz if 2 | n,

q
ne1 (_1)(n_1)/2a1 e anc ,U;Q(d) .
e ( d qge-np 2fn

Ngn(@,0,c) =

where p is the Mobius function.
Throughout much of this paper we are particularly interested in the congruence

a 22 4 -+ a,x2 =bx,---x, +c (mod p*), (1.2)

where n > 3, p > 2 is a prime, k is a positive integer, a1, ..., a,,b, c are integers
with p{ ay - - - a,. From now on, we assume that p t ¢. The result of Cohen mentioned
above yields

—1\"/2q, ... "
1) (W) pCE=D=D=1/2 ifo|p,

1)(77/_1)/2@1 ce e QApC

p

Npk)n (@7 0, C) =

pk(n—l) + <(_ ) p(%_l)("_l)/2 if 24 n.
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The special case

n—1 _ (71)”‘/20’1 ©Qn n—2)/2 .
p pn=2/ if 2| n,
p
Npn(@,0,¢) = (1.3)
’ _\n-D/2g
4 (( ) . = a"c) pD/2 if ok,

is due to Jordan [20] (see also [7, Theorem 10.5.1]). Carlitz [9, Theorem 1] showed
that if p 1 b then

o1+ (2)+(3)+(2) )

" <b20—4a1a2a3)p. (1.4)

p

Further, if p | (b%¢? — 16a1a2az3a4) then [9, Theorem 3] yields

3 ((57)+ (57)+ (59 - (5)
(5)+ (5) G2 (5)
(GGG GNE) oo

Also, if p | (b?c® — 8ajazaszay) and (%) + (%) + (%) + (%4) = 0 then [9, The-

orem 2| together with properties of Jacobsthal sums [7, Proposition 6.1.10 and
Theorem 6.2.1] imply that

3—2p—1 ifp=3 d4
Npa(@be) =" =P or (mod 4), (1.6)
' PP +2A+1)p—1 ifp=1 (mod 4),
where the integer A is uniquely determined by
p=A%+ B?, A= -1 (mod 4). (1.7)

In general there is no explicit formula for evaluating N, ,,(a,b,c). The aim of
this paper is to find expressions that allow us to calculate N, ,(a, b, ¢) if N, (@, b, c)
is known. Our main results in Sec. 3 are Theorems 3.3-3.8, in which we obtain the
desired expressions. In Sec. 4, we combine our expressions with the results of Carlitz
mentioned above to determine explicitly N, ,,(a,b, c) and Ny »(a,b, c) for n = 3 and
for n = 4. In Sec. 5, we compute the corresponding Poincaré series and verify the
Q-conjecture of Hayes and Nutt [17]. Poincaré series for more general polynomials
are discussed in Sec. 6.
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Throughout this paper, we use the following notation. Let N;k ,,(@, b, c) denote

the number of solutions to (1.2) withp{ 21 - - - x,,, and N;g)n(@ b,c)= Ny ,(a,b,c)—
N;,C (@, b,c). Let r be a non-negative integer such that

|| (22 —4(n —2)"2ay - ayp).

For b%*c"~2 = 4(n —2)""2a; - - - a,, we use the convention r = co. Let

((1)<n2>/2 -2(n — 2)) it2 ] n,

p

(U=

For any positive integer g, set {; = exp(27i/q).

2. Preliminary Lemmas

First we state our earlier result which will be useful in the sequel. We write |A| for
the number of elements of a finite set A.

Lemma 2.1. Let f € Z[xy,...,2,] be a nonzero polynomial, and let k, oy, ..., ap, be
integers with k > 2 and 0 < oy, ...,a, < [k/2]. Forv € {k—1,k}, let Ag,, be the set
of n-tuples (uy,...,u,) of integers such that 1 < uy,...,u, < p”, f(ui,...,up) =0
(mod p¥), and for each j,

of

p*i %j(ul,...,un) if oy <[k/2],
i gxi(ul,...,un) if o =[k/2].

Let

A(ELOL :{(u17~..7un) EA&J_/ :p|u1...un},
.A:;,V = {(ula-..7un) E.A@7V p'i'ulun}

Ifmin{ar, ..., an} < [k/2) then |AL)| = p" 1 AL) || and |AZ | = p" AL 4.
Proof. See [4, Lemma 2.1 and Remark 2.2]. O

Next we recall a few facts about characters. The following lemma gives the
orthogonality relation for Dirichlet characters modulo p*.

Lemma 2.2. For integers x and y with pt z,

k i k T —
) x(x)x(y)z{w(p) f" | (& =),

x (mod p*) 0 "t (@ —y),

where the summation is taken over all Dirichlet characters x modulo p*.
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Proof. See [1, Theorem 6.16]. |

Since

doox@xw) = D x@x) - > x@)x(),

x (mod p*) x (mod p*) X (mod pk=1)
X - primitive

for k > 2, the next lemma is a straightforward consequence of Lemma 2.2.

Lemma 2.3. Let k > 2. Then for integers x and y with p{ x,

e(p*) — oY) if pF | (z—y),
> x@xW) =~ ifp || (= — ),
X (mod p*) 0 if P (x —y).

X - primitive

Let x be a Dirichlet character modulo p*. The Gauss sum corresponding to x is
defined by

G(x) = Z X(f)CZk

x=1

Gauss sums occur in the Fourier expansion of a primitive character.

Lemma 2.4. Let x be a primitive Dirichlet character modulo p*. Then for any
integer x,

Proof. See [1, Theorem 8.20]. m|

For a Dirichlet character y modulo p*, define

Too= Y xaf o e)P(eed + o a0
1<y, ., xpy <pk
In the following lemma we express T'(x) in terms of Gauss sums, under a certain
restriction on the coefficients. For convenience, we also use the notation 7 for the
Jacobi symbol (5>

Lemma 2.5. Let x be a primitive character modulo p*. Assume that (a—pl) ==

(a?") = (76(”;2)), Then

k

T(x) = o ';k")G(XQ) ii"’Q(y) o (G(X) + <C(n — 2)y> G(xn))n-

y=1
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Proof. Note that ¥? is primitive. By Lemma 2.4

k

G72 —(a x2?++a, 22 —c
layz] +- - +a,al —c) = ;ig )ZXQ(?J)Cpk( e
y=1
Hence
G72 o c —(a, 24 Ha,x?
()= (>]§) ek Y X(ﬁ---aci)(pk( @it ta,en)y
P y=1 1<zy,...,x, <pk
GXQ Pk C u - —a;T;
= ;k )ZXQ(y)Cpi’ 11> (1 + (J)) X(@;)¢
y=1 j=lz;=1
pty
) & :
C — _a
= IS e I e (600 -+ (22 Gom).
y=1 j=1
pty
that is
k
a a,)G (%2 D e e c(n—2 "
750 = M IEUE Y 2y (600 + (U2 ) Goun)
b u=1 P
as desired. O

Let k > 2, and let ¢ be a primitive Dirichlet character modulo p* of order ¢(p*)
normalized such that

1+ = ¢ if 2| k,
_ p+1 4_ _ .
’l/] (1 +p(k) 1)/2 + Tpk 1) _ Cp(i+1)/2 if 2 * k.

Then every primitive character Y modulo p* has the form x = 17 with p 1 j.
Lemma 2.6. Let k > 2. For any integer j with pt j,

o [(PPG)G, if 2|k,

7y — .
=) (D) g izt
Proof. See [15, Corollary 2.1]. O

Lemma 2.7. Let k > 2. For any integer j with p1 j,

6w = (1) otw).
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Proof. Observe that n = W’k(”_l)/Q. Applying Lemma 2.6, we deduce the asserted
result. m|

Lemma 2.8. Let k > 2 and let j be an integer with p t j. Assume that (“—pl) ==
(&) = (70(”;2)). Then

p

T(¢j) — 2npkn/2¢j (cn72)7,/;j (4(n — 2)n72a1 e ap)
! if 2|k,

% n+1 o NN ,
(2> <” 2> (J> D=0 pot )
P p ) \p

Proof. Appealing to Lemmas 2.5 and 2.7, we obtain

T() = DAl CRICT) iwﬁ“”@)@cy (1+ (Wp‘”y))

_ 2N (a1 - an) G () G(9Y)
- o

k

- 7, (n—2) —cy je(n —2) o Y\ 7i(n—2) ey
y=1 y=1

y=

B 2"~ Lpi(ay - - - an)wj(””)(—c)G"(wj)G(zZ2j)
= o

< (apomn+ (222 (=) gy,

271pI (ay - - - @y )17 (V2 (=) G () G () G (17 (V= 2))
P '

that is

() =

Note that

P (=25) = P ()2 (5),
YD (—j(n - 2)) = D (1) (n — 2)" 2P ()P ().

Combining these relations with Lemma 2.6 and (2.1) and using the fact that

1-p _ <2> =12 /4
8 - )
p

we deduce the desired result. O
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Lemma 2.9. Let k > 3 be odd. Then for integers x and y with p*~! | (v —y) and
pta,

wf) (J) W () () = (—y> ((x—y)/l?k_l> {014k (3/2) () _ 7).

= p p p
Proof. Since p*~! | (x — y), there exists a positive integer ¢ such that
=y +p ) =y +p")" (mod ph).
Note that

p+1 ;4 k-1/2
Tpk 1)p

(14 pt=D/2 4 =1+4+p"1 (mod p*).

Thus, for any integer j,

L o (R=1)/2 _ p+1 4 —jtpk=D/2 —j
() = (L2 EEL ) i o
Hence
o (p") . o(p") . k t
Z (j) W () (y) = (3) ¢t = # (") <_> i(p—1)2/4\[.
= \p = \p) " p \p
Since
T —
k:ly =yt (mod p),
p
we have
()-() (=)
p p p ’
and the asserted result follows. ]

An immediate consequence of Lemmas 2.3, 2.8 and 2.9 is the following (recall
that @ was defined at the end of the introduction).

Lemma 2.10. Let 2 < k <r+ 1. Assume that (%1) =...= (%) = (@) and
p1b. If kn is even then

1 ongkp(kn—2)/2(p _ 1 ifk<r,
D S (At I AN Rt
e (p*) —2ngrHplrEn=/2 f =y 41,

x (mod p*)
X primitive

If kn is odd then

1 k—1 " e
= Y xX(AT(x) = P Lnghpkn=1/2,

x (mod p*)
X primitive
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3. Expressions for Ny ,(a, b, c)

First we show that the difference N}SS)" (@,b,c) —p"‘lngg),l (@, b, c) vanishes for all
k> 2.

Lemma 3.1. Let k > 2. Then ngg)n(@ b,c) — p”leZEO) (a,b,c) = 0.

k=1 n
Proof. For v € {k —1,k}, let Nég?n(d, b, ¢) denote the number of solutions to the
congruence
a2+ -4 a,2> =bx,---x, +c (mod p¥) (3.1)
in x1,...,2, (mod p¥) such that p | 1 -- -z, and
2a1x1 = bxrows - - x, (mod p[k/z]),

20019 = bxlfﬂg ez, (mod p[k/Q])’

(3.2)
20p,x, = br1ze - Tp—1 (mod p[k/Q]).
By Lemma 2.1
N (@b,e) —p"'NJY (@,b,e) = N (@,b,0) —p" NS, (@b,0).

It is readily seen that for each solution (z1,...,z,) to the system of congru-
ences (3.2) with p|zy -+ -2, we have p|x1,...,p|z,. But since pfc, none of these
solutions satisfy (3.1). Therefore, N;S)n(a, b,c) = NIEQL ,(@,b,¢) =0, and the result
follows. o

Next we show that in many cases N;,c L(a,b,c) — p”le;,c,l (@, b,c) also
vanishes.
Lemma 3.2. Let k > 2. Then N}, (@, b,c) — p”_lN;‘k.,1 (@, b,¢c) =0 except pos-
sibly when (%) = - = (%) = (42) piband k <+ 1.

p p

Proof. For v € {k —1,k}, let N} ,,(a,b, ¢) denote the number of solutions to the
congruence (3.1) in x1,...,x, (mod p¥) such that ptx;---z, and (3.2) holds. By

Lemma 2.1
Nji (@, b,c) —p”_lN;k,_lm(d, b,c) = Ny . (a,b,¢) — p"_ll\_f;k_l)n(@, b,c). (3.3)

Observe that N;k L(@,b,c) = N;k,l ,(@,b,c) =0 for b =0 (mod p). Further, when
p{xy---xy,, the system of congruences (3.2) can be rewritten as

- =2a,2% = bxy -z, (mod pl/2). (3.4)

For any integers z1,...,x, with pfzy - -z, for which (3.1) and (3.4) hold simulta-
neously, we have

(n—2)a-x? = ¢ (mod pl*/?]), ji=1,...,n (3.5)
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Consequently, J\_f;k L@, b,c) = J\_/';‘k,l ,(@,b,c) = 0 except possibly when (%1) =
J— (%) = (70(’”_2)) and pfb
P P

Now assume that (2) = ... = ( ") = (c("p 2) ),ptbandzy,...,z, are integers
with p{ 2y - - - 2, satisfying (3 1) (3.4) an ( ) We have
(@22 4 +a,z2 —¢)? =b%2?---22  (mod p"~1).

Multiplying both sides by (n —2)"a;---a, Z 0 (mod p), we obtain

2
(n—2)""2a,---a, Z((n - 2)ajac§ —c)+2¢
j=1
=0’ H(((n —2)a;z; —c)+c) (mod JARRE (3.6)
In view of (3.5),
n 2 n

Z((n - 2)aja:? —c)+2| =4+ 402((71 - 2)ajx? —¢) (mod p*h)
and

H(((n - 2)ajm? —c¢)te)=c"+ ! Z((n - 2)ajx? —¢) (mod p*7h).

We can now rewrite (3.6) in the equivalent form
(V"2 —4(n—2)"2a,---a,) | *+ CZ n—2)a x —¢)| =0 (mod p* ).

By (3.5), this is only possible if p*=1 | (b?c"~2—4(n—2)"2a, - - - a,,), or, equivalently,

if kK <7+ 1. Therefore we have established that N* L@, b,c) = N;k . n(c‘z b,c) =0
except possibly when (%) == (a?") = (M) pJ(b and k < r+1. The asserted
result now follows from (3.3). O

We are now ready to determine N, ,,(a,b, c) in the case p | b. We obtain imme-
diately from (1.3) and Lemmas 3.1 and 3.2 the following.

Theorem 3.3. Assume that p | b. If n is even then

-1 n/2
Nyo (@b, ) = pH=D) — (( )

If n is odd then

ai--- an) p((2k71)(n71)71)/2'
p

—1)n=1/24 ...
Nyt n(@,b, ) = p"" = 4 <( ) o

anc 1) (n—
> pE-D(=1)/2,
p
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Remark 3.4. Under the condition p | b we have N, ,(a,b,c) = Npk ,(a,0,c).

It remains to calculate the difference N*, (a,b,¢) —p" IN*._, (a,b,c) in the
pTn P n

case (%) == (%) = (an_z)),pfb, 2<k<r+1.
Lemma 3.5. Let 2 < k <r+ 1. Assume that (%) =... = (%) = (@) and

p1b. If n is even then

2n—1€kp(kn—2)/2(p _ 1) ka <r

* — _ n—1npr* — _ — '

Ny (@, 6,¢) =" Npja (@, b, ¢) {—2n—19r+1p((r+1)n—2)/2 ifk=r+1.
If n is odd and k # r + 1 then

* — n—1 nr* a3 —
Npk,n(av b,c) —p Np"’lm(a’ b.c)= otherwise.

{2”_1p(k"_2)/2(p —1) if2|kandk<r,
If n is odd, » > 0 and b*>c"~2 # 4(n — 2)"2ay - - - a, then

b2cn2 —4(n —2)" 2a; - -ay, T

Nyrir (@ b,) = p" " INp L (@,0,¢) = (1) @

% 2n—16r+1p[((7-+1)n—1)/2] )

Proof. For v € {k —1,k}, let N;‘ym(d, b, ¢) denote the number of solutions to the
congruence

(a27 +---+a,22 —c)* =b*x3 - 22 (mod p”)

in x1,...,2, (mod p¥) such that ptx;---x,. It is readily seen that
Ny n(@,b,¢) = N ,(a,b,¢) + Ny (@, —b,c) = 2N, (@, b, c).

Further, by Lemma 2.2,
N (@b, c)

1 —
= (p*) Z Z X(b%%...z%)x%alﬁ+...+anxi_C)
o 1<zq,...,z, <p® x (mod p¥)
M$1"'wn
1
= 200 Z Z x(0*z? 22 (a2 + -+ a2 —¢)
1<y, zn <p® X (mod pkF=1)
P)(fﬂl-“acn
1
+ (") Z Z x(b*z? 22 (agxt + -+ a2 —c)
o 1<z1,,@n <p* x (mod p*)
X - primitive
n—1 xr* _ 1
A SECLERS- - ) SRR
e(p") v iis

X - primitive
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Hence
1
N o(@0,0) =p" 'Nio (@ 0,0) + 5——= . x(0")T(X).
’ ’ 2¢(p*) ;
x (mod p”)
X - primitive
The required expressions now follow from Lemma 2.10. O

Corollary 3.6. Let

i () (5) - (52)

b2cn=2 =4(n —2)" 2ay - - ay,

() () (52 m

k > bQCn—Q — 4(n _ 2)n—2a1 O,

o (3) - () ()

b2 £ 4(n —2)"2ay - ap,

2 otherwise.

If2 | n, (%) == (“?") (#) and b*c"~? = 4(n — 2)"2ay - - a, then

Ny (@, b,¢) = (p" ™ + 0p™*) Ny, (@, b, ) — Op®"=D/2N 2 (@, b, ¢);

if 24 n, (%) == (“7") = (@) and b?>c"=? = 4(n — 2)"2ay - - - a, then
Nk p(@,b,¢) = p" " Npr-1,,(a@, b, ¢) + p"Npr-2 ,,(@, b, ¢) — p** "' Npe-s (@, b, ¢);
otherwise

Ny n(@,b,¢) = p" ' Nye-1 (@, b, c).

Appealing to Lemmas 3.1, 3.2 and 3.5, we obtain the following results.

a

Theorem 3.7. Let n be even and p{b. If (%) == (?") = (6(722)) and k <r
then

Ny (@, b, c) :p(k_l)("_l)Npm(d, b, c)
pl=D(n=2)/2 _ gh-1
p(n—Z)/Q -0

4 anlp(kn72)/2(p _ 1) .
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()= =(2)=(2), r>0and k> r then
Nk (@, b,c) =p*= V=D N, (@b, c)
4 oL ((2k=r)(n=1)+7)/2 _ plr D22 gt
p P2/ _g
_ gn=1((2k=r—1)(n—1)+r=1)/2 | prn=2/2 —gr
p p—2/2 _g
In all other cases
Ny (@, b, c) = pE=D=DN, . (a,b,c).
Theorem 3.8. Let n be odd and p1b. If (%) =...= (a?") = (6(7;2)) and k <r
then
Nyt (@, b,¢) =p*D=DN, (@b, )
[k/2](n-2) _q
gn—1 k(n—1)=[k/2](n=2)~1¢) _ 1y . p
+2" " p (p—1) T
If(9) == (%)= ("2, v is odd and k > r then
Ny (@, by c) =pF=D=D N, (@b, c)
4 9n=1p(@k=r+)(n-1)+r-1)/2 plr =272
pn—2 _ 1
_gn—1((Zk—r—1)(n—1)+r—1)/2 prtn=2/2
p pn—2 -1 :
If(%) =...= (a?") = (@), r >0 is even and k > r then
Ny (@, b,c) =p*= V=D N, . (a,b,c)
r(n—2)/2 _ 1
n— c—Tr)(n— r— p
+ 2n—1p(@k=r)(n—1)+ 2)/2(p —1)- -
b "2 —4(n—2)"2ay - ay,
i " g 1gy(k=r=1)(n=1)+r)/2,

p

In all other cases

Ny (@, b, c) = pE=D=DN, (a,b,c).

4. Explicit Formulas for Ny« 3(a, b, c) and for Nyt 4(a, b, c)

In this section, we use the expressions obtained in the previous section together
with the results of Carlitz [9] to determine explicitly Ny« ,,(a,b,c) for n = 3 and for

n =4.
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Combining (1.4) with Theorem 3.8 leads to the following.

Theorem 4.1. Let p1b. If (%) = (%) = (%3) = (%) and k < r then

]\/vp;c’?’(aJ)7 C) — ka + 4p2k—1 +p2k—2 _ 4p2k_[k/2]_1_
If (%) = (%) = (%) = (%), r 15 odd and k > r then

Ny 5(a@,b,c) = p2k + 4p2k—1 +p2k—2 . 4p2k—((r+1)/2) _ 4p2k—((r+3)/2).

s

If (%)= (%)= (%3) = (%), r > 0 is even and k > r then

Npk73(d, b, C) :p2k + 4p2k71 _’_p2k72

n (((bzc— 4a1a2a3)c/p7") _ 1) (/).
p

In all other cases

s (8):(2)- () )
p p p p
v (bQC — 4(11&2&3) p2k—1.
p
Similarly, by combining (1.5) and (1.6) with Theorem 3.7, we arrive at the

following results.

Theorem 4.2. Let ptb. Assume that p | (b*c? — 16aazaz3a4). If (%) = (%) =
(%3) = (%> = (%); p=1 (mod 4) and k < r then

p p

NpkA(El, b’ C) — p3k + 3p3k—1 _ 3p3k—2 _ p3k‘—3 _ 8p2k_1.

If (%) = (%) = (%)= (%)= (%), p=3 (mod 4) and k < r then

p p p D
Npk,4(d7 b7 C) :p3k - 3p3k_1 + 11p3k_2 — p3k—3

p+1

8P (p—1)-

I () = (%) = (%d) = (%) =(2),p=1 (mod 4) and k > r then
Ny 4(@,b,¢) = po* + 3p%F—1 — gph=2 _ p3h=3 _ gyk=r—1 _ g;k—r-2
53 = (3)= (3) = (3) =
Ny 4(@, b, ¢) =p™ = 3p* =1 4 11p*h =2 — p?h=3

w _ gplhr-2. w
p+1 p+1

—
[

;C), p=3 (mod 4) and k > r then

4 8p3k7T .
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In all other cases
1
Ny (@, b,e) =p™ + - ((am) - <a1a3> + (a1a4) + (a2a3)
2 p p p p
~1 —1
() () (- (D)
p p p D
() 6) B ) )
p p p p p

Theorem 4.3. Letptb. Assume thatp | (b*c*>—8ajazazay) and (%)+(a2)+(a3)+
(%4) = 0. Then

p3k _ 2p3]€—2 _ p3k‘—3 pr = 3 (mod 4)7
PP H2A+ )P —p* T ifp=1 (mod 4),

Npk74(d, b, C) = {

where the integer A is uniquely determined by (1.7).

Next we evaluate the number Ny ,,(a,b, c) of solutions to (1.1), under a certain
restriction on ¢. If ged(ay---anc,q) = 1 and each prime divisor of ¢ divides b
then, by the remark following Theorem 3.3, N, (a,b,c) = Ny (a,0,c). Hence by
[10, Corollary 2],

n— (_1)n/2a1 o lp \ B d) .
qz 1%( d d7(1/2 1f2\n,
Nq’n((_l,b, C) - ( )( 1)/2 2( )
_ —nH\"=bH’%aqy .- a,c w(d .
n—1
q dzlg ( 7 > Tn=1)/3 if 21 n.

Using Theorems 4.1-4.3, we can easily obtain expressions for N, (@, b, ¢) in some
other cases.

Theorem 4.4. Letq > 1 be an odd integer coprime with a1, as, ag and c. Write q =
q192939495, where q1, G2, q3, q4, G5 are pairwise coprime positive integers satisfying
the following conditions:

(a) each prime divisor of q1 divides b;

(b) b and g2q3q4qs are coprime;

(c) if p 225 a prime dividing qs then (?1) = (?2) = (?3)
p | (b%°c — 4ajazas);

(£). »* | a2 and

(d) b?c — 4ajasaz and q3quqs are coprime;
(e) if p is a prime dividing q3q4qs then

0 ifp|ags,

a) () (@), (C) 2 (Ko dmaan)), |
()5 () G)= () 2 vl

-2 ifp|gs.
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Then
_ 2 —ayazaze p?(dy) f1(dz)3" (%)
Nys(a,b,e)=¢* [ > 7 J > B
| ' ' da| :
1191 21492
2
Z 1% (d3) Z p*(ds) | ©*(gs)
dg d4 q% ’
dslqs d4lqa

where v(da) denotes the number of distinct prime divisors of dy. In particular, if
ged(b, q) = ged(b?c — 4ajasas,q) = 1 and for each prime p dividing q we have

(%) + (%) + (9) + (5) = —2- (Fetpezss) then Nya(a,b.c) = ¢(a)-

Theorem 4.5. Let ¢ > 1 be an odd integer coprime with ai, as, as, aq and c.
Write ¢ = 192939495, where q1, g2, q3, 44, Q5 are pairwise coprime positive integers
satisfying the following conditions:

(a) each prime divisor of q1 divides b;

(b) each prime divisor of qa2q3 divides b*c? — 8ajazazay;

(c) each prime divisor of quqs divides b*c*> — 16ajazaza4;

(d) if p is a prime dividing q2q3qs then (%) + (%) + (%3) + (%) =0y
(e) if p is a prime dividing qo then p — 1 is a perfect square;
(f) if p is a prime dividing qsqs then p =3 (mod 4);
(

g) if p is a prime dividing g5 then (ﬂ) + (“—2) + (“—3) + (‘;—4) =—4- (%)

p p p

_ ajasasay \ p(d w(d
Nyataboe) =g | 3 (1) MOD ) (57 K

da|q2

ds|qs dalgs
—1Y p(ds) (—1> 12 (ds) | #°(g5)
X R N 9
s @) ) (2 @) )

where o(dy) denotes the sum of divisors of dy. In particular, if for each prime p
dividing q we have p | (b*c® —16ajazazay), p=3 (mod 4) and (%) + (%2) + (%3) +
(%4) =—4. (%) then Ny 4(a,b,c) = ¢*(q).

5. Poincaré Series

Let f € Z[x1,...,x,] be a polynomial and let ¢ denote the number of solutions to
the congruence f(z1,...,2,) =0 (mod p*). The generating function

[ee]
Pr(t) =1+ cxt?
k=1
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is said to be the Poincaré series of f. Borevich and Shafarevich [8, p. 47] raised the
question of whether Pf(t) is always a rational function. Igusa [19] and Denef [12]
gave an affirmative answer using completely different methods. Both proofs are non-
constructive and don’t show how to express P(t) as a quotient of two polynomials.

There are, however, certain classes of polynomials for which the correspond-
ing Poincaré series can be computed by elementary means. Goldman [13,14]
derived explicit formulas for the Poincaré series associated with strongly nondegen-
erate forms and with certain algebraic curves. The case of a diagonal polynomial
flay, ... x,) = alx‘fl + - +a,zd + ¢, where ay,...,an,c €Z, dy,...,d, € ZF,
was treated by Wang [23] (for ¢ = 0 and p t a1---a,) and Han [16] (for
ptay - --apdy - - dy), and more recently by Deb [11] (for an arbitrary diagonal poly-
nomial). Recently [4], we calculated explicitly Py(t) for a Markoff-Hurwitz polyno-
mial f(z1,...,2,) =22+ -+ 22 —bxy---x,, where b€ Z and n > 3.

Hayes and Nutt [17] presented a further conjecture: Py(t) can be written as
Pr(t) = Q1(t)/Q2(t), where Q1(t) and Q2(t) are polynomials in Z[t] (possibly with
common factors) and Q2(t) is a product of polynomials of the form 1 — p™t® with
m,s € Z, m > 0, s > 1 and m < ns. They called this assertion the Q-conjecture
and proved it in a number of cases. Note that the (Q-conjecture holds for the special
classes of polynomials mentioned above.

Now consider the case f(z1,...,7,) = a;2? + -+ +a,x2 — bz, - - - x, — ¢, where
ai,...,an,b,c€Z, n > 3. Assume that p > 2 and p J( aj - - - apc. Matching up with
our previous notation, we have

*1+Z nabck

It is well-known that a power series represents a rational function if and only if
the sequence of its coefficients eventually satisfies a linear recurrence relation with
constant coefficients. In this case, the denominator is completely determined by
the recurrence. The coefficients of the numerator polynomial are determined by the
values of the initial terms prior to the recursion. Thus, in view of Corollary 3.6,
P;(t) has the form

R(t)
Py(t) =
7 (1) (1—pr1H)(1— 9p7z/2t)
if (%):~-~:(%):(C("p_2)) b2c"=2 = 4(n — 2)"2a; ---a, and n is even,
R(t)
Pr(t) =
1= )
if (%1) =...= (“?") = (C("p_Q)) h2en—2 4(n 2)"~2q; -+ -a, and n is odd, and
R(t)
Pi(t) = ———
r(t) = o Ti
otherwise, where R(t) € Z[t]. We see that the @Q-conjecture holds in this case.

Further, for b = 0 (mod p), we have Nk ,(a,b,c) = Ny ,(a,0,c), in view of the
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remark following Theorem 3.3. Thus, combining the result of Han [16, Theorem 5.3]
for diagonal polynomials with (1.3), we deduce that in the case p | b

R(t) =1+ (Np.n(a,0,c) —p™ )t

12, ...
1-— <( Dl an)p("Q)/2t if 2 | n,
P
N (=172, ...
1 =+ (( ) al anC) p(n—l)/Qt lf 2 T n.
p

The results of Sec. 3 allow us to determine R(t) in other cases.

Theorem 5.1. If (%) =+ = (%) = (6("1'%2)), b2cn2 = 4(n—2)""2ay ---a, and
n is even then

R(t) = (1+ (Npn(@,b,¢) — p"~H)t)(1 — 6p™/2t) + 2"~ 1p"~Lp — 1)t2

If(a)=-.= (=)= (70(71;2)), b2c"2 =4(n —2)""%ay---a, and n is odd then

R(t) = (L4 (Npn(a,b,c) — p" Ht)(1 — p"t?) + 2" 1p"~Hp — 1)t2.
If(e)=-=(2)= (@), b2c"2 £ 4(n—2)""%ay---a, and r > 0 then
R(t) =1+ (Np,n(ay b, C) _pn—l)t _ (_1)n(r+1) . 2n—107‘+1p[(n(7‘+1)—1)/2]t7‘+1
y ((b20n2 _ 4(7’L _ 2)”720,1 . an)/pr)n(T+1)

p

r—2
Zo GIpin/2ti if 2 | n,
j=
((r—2)/2]
ST pIE if24n.

=0

+ 2n—1pn—1(p _ 1)t2 .

For all other cases,

R(t) =1+ (N n(a,b,c) — p" .

6. Further Generalizations of Markoff-Hurwitz Equations

In this section, we consider a more general congruence
dl e dn = b oo d k 6 1
axit + -+ a et = by -z, + ¢ (mod p¥), (6.1)

where p > 2 is a prime, a1, . .., a,, b, c are integers, dy, . . ., dy,, k are positive integers,
ptaj---apcdy---dy, n > 2. Assume in addition that at least one of the following
conditions holds:

(a) p | b;
(b) ged(dj,,dj,,p — 1) 1 (ind aj,dj, —ind aj,d;,) for some ji,j2 € {1,...,n};
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() p| ((D/d1) + -+ (D/dn) — D);
(d) pt ((D/dy) + ---+ (D/d,) — D) and
ged(dj,p—1) 1 (inda;((D/dy) +--- + (D/d,) — D) —ind e¢D/d;)
for some j € {1,...,n};

()

D/dy D/d,
pD (D/d1) 4+ +(D/dn) =D <D> / ...(D) !

dy dn
D D (D/dy)+++(D/dn)~D
7£DD 4.2 _D alD/d1~~~a5/d",

dy dp,
where ind z denotes the index of the integer z # 0 (mod p) with respect to a fixed
primitive root modulo p and D = lem [dy, ..., d,].

Throughout this section, Ny« (@, b, ¢) denotes the number of solutions to (6.1)

in 1,...,7, (mod p¥), N ,,(@,b,c) denotes the number of such solutions with
ptay--a,, and ngg)n(d, b,c) = Npk n(a,b,c) — N (@, b, c). By the same type of

reasoning as in Sec. 3, we can obtain a linear recurrence relation for Ny ,(a, b, c)
and calculate the corresponding Poincaré series.
For a fixed k > 2 and v € {k — 1,k}, let Né??n(@ b,c) and N}, ,,(a,b,c) denote
the number of solutions to the system of congruences
ax + -t a,x = b, -z, + ¢ (mod p¥),

aydyz ! = bagas - -z, (mod pl/2),

aydox P2 = bayxs -2, (mod plF/2y, (6.2)
a’ndnwin_l = b$1$2 o Tp—1 (mOd p[k/21)7
in 1,...,2, (mod p¥) with p | ;- -z, and p {1 x1---x,, respectively. From

Lemma 2.1 we deduce that

N;g?n(é, b,c) — p"_lNzgg) (a,b,c) = N;S?n(a, b,c) — p”_ll\_féo) (a,b,c),

—1,,” k—17n

Nk p(@,b,c) — p"_lN;k,l,n(&,IL c)=N* (a,b,c)— p”_ll\_f;k,lﬁn(d, b, c).

pF.n
By employing the same type of argument as in the proof of Lemma 3.1, we see that
N (@.b,c) = N,(,g)q (@, b,c) =0, and so

pk,n

N (@b,e)=p"'NQL, (a,b,c) for k> 2.

pk.n k=1n

Next we calculate N, | (a,b,c) — p”_lN;k,l,n(d,b,c). When p t 21 - x,, the
system of congruences (6.2) can be rewritten as
a’lxgll ++a’nxzﬂ bel'”xn_’_c (mOd py), (6 3)

aydyz® = - = a,d,z% =bxy -2, (mod plF/).
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Observe that (6.3) yields the congruences
D D . D
<d1 +--+ = —D) ajx?] =c — (mod pF/2), 1< j<n. (6.4)
n J

It follows easily that if at least one of the conditions (a)—(d) holds then

N;k7n(a7b7 C) = N;kfl,n(aab7c) = 07 and so N;k7n((_7’a b,C) = pnilN;k—l,n(a7b7 C)
for k > 2.

Now suppose that none of (a)-(d) holds. Hence the condition (e) holds. If
k-1,(a,b,c) = 0 then we are done. Assume that Nyi-1,(a,b,c) # 0 and

N

P
Z1,...,&, are integers with p { x; - - - z,, satisfying (6.2). Then
(agzd + -+ a,zd — )P =bP2P .. 2P (mod pFY).
Multiplying both sides by (% + e+ dQ — D)(D/dl)Jr'”Jr(D/d")a?/d1 --~a5/d", we
obtain
D D D/d
(dl_i_..._|_d11_D> al/l"'ar?/d"

Further, using (6.4), we find that

(D/d1)++(D/dn)—D
DD(ermijD) GPlds .. D/
1 n
D/d D/d,
_ D (D ds) 4 +(D/dn) ~D (f) L (f) (mod pl/2).
1 n

In view of the condition (e), the latter is not true if k is sufficiently large. Thus
Ny ,(@,b,c) = Ny (a,b,c) = 0 and N}, (a,b,c) = p”_lNgk,l’n(&b, ¢) for
sufficiently large k.

The results may be summarized as follows.

Theorem 6.1. For sufficiently large k
Npk,n(d, b,c) = ;I?n_l.Z\fpk717n(d7 b, c).

In particular, if at least one of the conditions (a)—(d) holds then the number of
solutions satisfies the above recurrence relation for all k > 2.

Taking into account the fact that N, ,(a@,b,c) = p"~! if ged(d;,p — 1) = 1 for
some j and p | b, we obtain the following corollary.
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Corollary 6.2. Let p > 2 be a prime and

fl@e,.. e = a2+ a,zd —bay -z, —c,
where the integers ay,...,an,b,c,dy,...,d, satisfy the above conditions. Then the
Poincaré series Py(t) is a rational function of the form
R(t)
Pf (t) =T o
1—pn—it

where R(t) € Z[t]; in particular, if ged(dj,p — 1) = 1 for some j and p | b then
R(t) = 1.

Finally, we notice that the @Q-conjecture of Hayes and Nutt [17] holds for this
class of polynomials.
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